University of California, Santa Barbara

Department of Electrical and Computer Engineering
ECE 152A - Digital Design Principles
Homework \#4

Problem \#1.

A JN flip flop is constructed by (internally) complementing the K input to an otherwise normal JK flip flop. For the JN flip flop, derive the following:

1. The characteristic table
2. The characteristic equation
3. The state table
4. The state diagram
5. The excitation table

Problem \#2.

Design a 2-bit, binary up/down counter. The counter has 2 inputs, up_down and enable. The truth table below defines the operation of the counter:

enable	up down	operation
0	0	hold count
0	1	hold count
1	0	
1	1	decrement count
		increment count

Use positive edge triggered JK flip flops. In your answer, include (1) a state diagram, (2) a state table, (3) a next state map and (4) all Kmaps used in determining flip flop inputs

Problem \#3.

Design a three bit counter with a single input called mode. The counter counts in binary if the mode bit is zero, and counts in gray code if the mode bit is one (recall the three bit gray code is $000,001,011,010,110,111,101,100$). The mode bit can change at any time during the count sequence and your counter should begin counting in the new mode on the next clock input.

Design the counter using JK flip flops. You don't have to draw the logic diagram, specifying the J and K inputs to each flip flop is sufficient. Use A, B and C as the state variable names.

Include (1) a state table, (2) next state maps and (3) K-maps for all flip flop inputs.

Problem \#4.

Consider the flip flop illustrated below:

1. Would this flip flop function as a positive (rising) or negative (falling) edge triggered flip flop (and why)?
2. Construct the characteristic table for this flip flop.
3. What modifications are necessary to transform this into a D flip flop (the output Q should take the value of the single input D after the active clock edge)?
4. What modifications are necessary to transform this into a JK flip flop (the outputs Q and Q ' should toggle after the active clock edge when A and B = 0)?
5. If all the gates have a propagation delay of 10 ns (both $t_{\text {PLH }}$ and $t_{\text {PHL }}$), what would the worst case CLK to Q delay be?
6. Complete the timing diagram on the following page. Include arrows indicating the relationship and order of signal transitions. Assume the clock period is much greater than the gate delays. The initial conditions
are noted on the timing diagram.

Problem \#5.

In this problem you are to design a 3-bit counter having a single control input: x. When x is 0 , the counter counts up in even numbers ($0,2,4,6,0, \ldots$). When x is 1 , the counter counts down in odd numbers (7,5,3,1,7,...).

When the input changes, the count sequence should change appropriately from the current count. For example, if the current count is 4 and x changes from 0 to 1 , the next count should be 3 . If the current count is 5 and x changes from 1 to 0 , the next count should be 6 , etc.

Implement your design using T flip flops. Note that the state diagram is the most important part of the design. Any error in the state diagram will ripple throughout the design.

Include the following:

1. A state diagram
2. A state table
3. Next state maps for the three flip flops
4. Karnaugh maps for the three T inputs
5. Simplified equations for the three T inputs

Problem \#6.

This problem deals with the minimum clock period (or maximum frequency) of a digital system which generates a parity bit for a 3 bit data word. A parity bit is added to a data word to allow for single bit error detection and either even or odd parity can be implemented. In even parity, the total number of bits (including the parity bit) is an even number.

The truth table below illustrates the generation of an even parity bit for a 3-bit data word.

A B C Even Parity Bit

0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

The block diagram for the complete digital system is given below:

The parity generate block is the implementation of the combinational circuit defined in the truth table on the previous page. Based on that truth table, design the circuit using any combination of 7410's (3 input NAND gates), 7420's (4 input NAND gates) or 7486 (2 input XOR gates). Pinouts and switching characteristics for these devices are included on the following pages.

The input and output registers are to be implemented using 7474 D flip flops. The pinout and switching characteristics for this device are also included on the following pages. The specific characteristics for the 7474 are circled (other devices are also described on this table).

Include the following in your answer:

1. A Karnaugh map for the parity generate circuitry.
2. The minimized Boolean equation for the parity generate circuitry.
3. A logic diagram indicating which gates are used for the parity generate circuitry and how they are interconnected.
4. A logic diagram indicating how the 7474's are used to implement the input and output registers. Indicate what is done with all inputs and outputs (clock, preset, clear, Q, Q' and D).
5. A calculation of the minimum clock period necessary for your implementation to function properly. Include the equation you used to determine the minimum clock period and which numbers from the data sheet were selected and incorporated into this calculation.

TRIPLE 3-INPUT POSITIVE-NAND GATES

10

positive logic:
$r=\overline{\mathrm{ABC}}$

See page 6-2

DUAL 4-INPUT POSITIVE-NAND GATES
20
positive logic:
$Y=\overline{A B C D}$

See page 6-2

SN5410 (W)
SN54H10 (W)
SN54L10 (T)

SN5420 (W) SN54H20 (W) SN54L20 (T)
$\mathrm{NC}-\mathrm{No}$ internal connection

7410, 7420 Switching Characteristics

TYPE	TEST CONDITIONS ${ }^{\#}$	tPLH ($n s$) Propagation delay time, low-to-high-level output			tpHL (ns) Propagation delay time, high-to-low-level output		
		MIN	TYP	MAX	MIN	TYP	MAX
${ }^{\prime} 00,10$	$C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=400 \Omega$		11	22		7	15
'04, '20			12	22		8	15
'30			13	22		8	15

QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES
$86 Y=A \oplus B=\bar{A} B+A \bar{B}$
FUNCTION TABLE

INPUTS	OUTPUT	
A	B	Y
L	L	L
L	H	H
H	L	H
H	H	L

$=$ high level, L = low level

See page 7-65

SN54L86 (J) SN74L86 (J, N)

$$
\begin{array}{ll}
\text { SN5486 (J, W) } & \text { SN7486 (J, N) } \\
\text { SN54LS86 (J, W) } & \text { SN74LS86 (J, N) } \\
\text { SN54S86 (J, W) } & \text { SN74S86 (J, N) }
\end{array}
$$

SN54L86 (T)

7486 Switching Characteristics

switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {I }}$	FROM (INPUT)	TEST CONDITIONS		MIN	TYP	MAX	UNIT
tple	A or B	Other input low	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega, \end{aligned}$ See Note 3		15	23	
tpHL					11	17	ns
tple	A or B	Other input high			18	30	ns
tPHL					13	22	

7474 Switching Characteristics

Problem \#7.

In this problem you are to design a 3-bit counter with a single input (x). When x is 0 , the count should be incremented by 1 and when x is 1 , the count should be incremented by 2. Label the state variables A, B and C where A is the most significant bit.

1. Generate the state diagram for this counter.
2. Generate the state table for this counter.
3. Generate the next state K-maps for this counter.
4. Implement the design using T flip-flops. Indicate the inputs to the three T flipflops (the Boolean expression). You don't have to draw the circuit.

Problem \#8.

This problem addresses Verilog.

1. There are two errors in the code below; identify them and indicate a fix that will allow the code to compile (make any changes necessary but be clear on the changes).
```
module problem4_1 (x1, x2, x3, f, g);
    input x1, x2, x3;
    output f,g;
    reg f,g;
    assign f = (~x1 & ~x2 & x3) | (x1 & ~x2 & ~x3) |
        (x1 & ~x2 & x3) | (x1 & x2 & ~x3) ;
    g = (~x1 & ~x2 & x3) | (x1 & ~x2 & ~x3) |
            (x1 & ~x2 & x3) | (x1 & x2 & ~x3) ;
```

endmodule
2. For the module below, indicate the circuit that will be synthesized.

```
module problem4_2_A(x1, x2, x3, Clock, f, g);
    input x1, x2, x3, Clock;
    output f, g;
    reg f, g;
    always @(negedge Clock)
    begin
        f = x1 && f;
        g = f || x3 && x2;
    end
endmodule
```

3. Construct a state diagram for the Verilog code given below
```
module problem4_3 (Clock, A, B, Q);
    parameter n=3;
    input Clock, A, B;
    output [n-1:0] Q;
    reg [n-1:0] Q;
    always @(posedge Clock)
            begin
            if (A)
                if (B)
                Q <= Q + 1;
            else begin
                Q[1] <= ~Q[1]^Q[0];
                Q[0] <= ~Q[0];
            end
            end
endmodule
```

