University of California, Santa Barbara

Department of Electrical and Computer Engineering

ECE 152A – Digital Design Principles

Homework #4

Problem #1.

A JN flip flop is constructed by (internally) complementing the K input to an otherwise normal JK flip flop. For the JN flip flop, derive the following:

- 1. The characteristic table
- 2. The characteristic equation
- 3. The state table
- 4. The state diagram
- 5. The excitation table

Problem #2.

Design a 2-bit, binary up/down counter. The counter has 2 inputs, up_down and enable. The truth table below defines the operation of the counter:

<u>enable</u>	up down	operation
0	0	hold count
0	1	hold count
1	0	decrement count
1	1	increment count

Use positive edge triggered JK flip flops. In your answer, include (1) a state diagram, (2) a state table, (3) a next state map and (4) all Kmaps used in determining flip flop inputs

Problem #3.

Design a three bit counter with a single input called **mode**. The counter counts in binary if the mode bit is zero, and counts in gray code if the mode bit is one (recall the three bit gray code is 000, 001, 011, 010, 110, 111, 101, 100). The mode bit can change at any time during the count sequence and your counter should begin counting in the new mode on the next clock input.

Design the counter using JK flip flops. You don't have to draw the logic diagram, specifying the J and K inputs to each flip flop is sufficient. Use A, B and C as the state variable names.

Include (1) a state table, (2) next state maps and (3) K-maps for all flip flop inputs.

Problem #4.

Consider the flip flop illustrated below:

- 1. Would this flip flop function as a positive (rising) or negative (falling) edge triggered flip flop (and why)?
- 2. Construct the characteristic table for this flip flop.
- 3. What modifications are necessary to transform this into a D flip flop (the output Q should take the value of the single input D after the active clock edge)?
- 4. What modifications are necessary to transform this into a JK flip flop (the outputs Q and Q' should toggle after the active clock edge when A and B = 0)?
- 5. If all the gates have a propagation delay of 10 ns (both t_{PLH} and t_{PHL}), what would the worst case CLK to Q delay be?
- 6. Complete the timing diagram on the following page. Include arrows indicating the relationship and order of signal transitions. Assume the clock period is much greater than the gate delays. The initial conditions

are noted on the timing diagram.

Problem #5.

In this problem you are to design a 3-bit counter having a single control input: x. When x is 0, the counter counts up in even numbers (0,2,4,6,0,...). When x is 1, the counter counts down in odd numbers (7,5,3,1,7,...).

When the input changes, the count sequence should change appropriately from the current count. For example, if the current count is 4 and x changes from 0 to 1, the next count should be 3. If the current count is 5 and x changes from 1 to 0, the next count should be 6, etc.

Implement your design using T flip flops. Note that the state diagram is the most important part of the design. Any error in the state diagram will ripple throughout the design.

Include the following:

- 1. A state diagram
- 2. A state table
- 3. Next state maps for the three flip flops
- 4. Karnaugh maps for the three T inputs
- 5. Simplified equations for the three T inputs

Problem #6.

This problem deals with the minimum clock period (or maximum frequency) of a digital system which generates a parity bit for a 3 bit data word. A parity bit is added to a data word to allow for single bit error detection and either even or odd parity can be implemented. In even parity, the total number of bits (including the parity bit) is an even number.

The truth table below illustrates the generation of an even parity bit for a 3-bit data word.

A	В	С	Even Parity Bit
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

The block diagram for the complete digital system is given below:

The parity generate block is the implementation of the combinational circuit defined in the truth table on the previous page. Based on that truth table, design the circuit using any combination of 7410's (3 input NAND gates), 7420's (4 input NAND gates) or 7486 (2 input XOR gates). Pinouts and switching characteristics for these devices are included on the following pages.

The input and output registers are to be implemented using 7474 D flip flops. The pinout and switching characteristics for this device are also included on the following pages. The specific characteristics for the 7474 are circled (other devices are also described on this table).

Include the following in your answer:

- 1. A Karnaugh map for the parity generate circuitry.
- 2. The minimized Boolean equation for the parity generate circuitry.
- 3. A logic diagram indicating which gates are used for the parity generate circuitry and how they are interconnected.
- 4. A logic diagram indicating how the 7474's are used to implement the input and output registers. Indicate what is done with all inputs and outputs (clock, preset, clear, Q, Q' and D).
- 5. A calculation of the minimum clock period necessary for your implementation to function properly. Include the equation you used to determine the minimum clock period and which numbers from the data sheet were selected and incorporated into this calculation.

7410, 7420 Switching Characteristics

TYPE	TEST CONDITIONS#		tpLH (ns) Igation delay p-high-level o		tpHL (ns) Propagation delay time, high-to-low-level output				
		MIN	TYP	MAX	MIN	TYP	MAX		
'00, '10			11	22		7	15		
'04, '20	$C_{I} = 15 pF, R_{I} = 400 \Omega$		12	22		8	15		
'30	1		13	22		8	15		

7486 Switching Characteristics

switching characteristics, V_{CC} = 5 V, T_A = 25° C

PARAMETER¶	FROM (INPUT)	TEST CON	DITIONS	MIN	түр	MAX	UNIT
tPLH	A or B	Other	C. = 15 cF		15	23	ns
^t PHL	AOB	Other input low	C _L = 15 pF, R _L = 400 Ω,		11	17	1 113
^t PLH	A or B	0.1	See Note 3		18	30	ns
tPHL .	AOIB	Other input high	See Note 3		13	22	1 115

7474 Switching Characteristics

			SERIES 54/74		'70			, '73, , '107			74			'109			'110			'111		UNIT
				MIN	NOM N	XAN	MIN N	OM MA	X	MIN N	OM N	AX	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	-
			Series 54	4.5	5	5.5	4.5	-	_	4.5		5.5	4.5	5	5.5	4.5	5	5.5	4.5	5		v
Supply voltage, VC	CC		Series 74	4.75	5	5.25	4.75	5 5.2	5 4	1.75	5 5		4.75			4.75	5	5.25	4.75	5	5.25	
ligh-level output o	current, IOH				-	400			0		-	400			-800		-	-800			-800	μΑ
ow-level output c	current, IOL					16		1	6			16			16			16			16	mA
	Cloc	k high		20 .			20			30			20			25			25			
ulse width, tw	Cloc	k low		30			47			37			20			25			25			ns
	Pres	et or clear low		25			25			30			20	-		25	-		25			
nput setup time, 1	t _{su}			201			01			201			10			201			01			ns
nput hold time, t	the second se			51			01			51			61			51			301			ns
Series 54		-55	11.11	1.000			5	-55	1.1.1.1	125	-55		125	-55		125	-55		125			
	-		Series 54	-55		125	-55		P	00			1							_		°C
The arrow indic	ates the edge of	the clock puls	Series 54 Series 74 we used for reference aded operation	0 ince: †	for the	70 e risin	0 g edge,	1 for the	0	0	192.5	70	e note	ed)	70	0	: : ::	70	0		70	°C
The arrow indic ectrical chara witching cha	ates the edge of	r recommer	Series 74 ie used for refere	0 ince: † g free	for the	70 e risin	0 g edge, rature	t for the range	0	0	192.5	70		ed) '109	70	0	'11(70		'11	70	_
The arrow indic ectrical chara	ates the edge of acteristics ove aracteristics	VCC = 5 V	Series 74 we used for reference added operation V, TA = 25° (0 ince: † g free	-air te	70 e risin empe	0 g edge, rature	⁴ for the range 72, '73 6, '107	(ur	0	other	70 wise	7	'10	70			70			70	UN
The arrow indic ectrical chara witching cha PARAMETER ¹	ates the edge of acteristics over aracteristics FROM	vcc = 5 v to	Series 74 ie used for referended operation /, TA = 25° (TEST	0 ince: [†] g free	70 770	70 e risin empe	0 g edge, rature '7 MIN	t for M range 72, '73 6, '107 TYP M	(ur	0 Ning on Niess o	774	70 wise	7	'10	70		TYP	70	0	TY	70 1 P MA	UN
The arrow indic ectrical chara witching cha PARAMETER1	aracteristics over aracteristics aracteristics FROM (INPUT)	TO (OUTPUT)	Series 74 ie used for referended operation /, TA = 25° (TEST	0 ince: † g free	70 770	70 e risin empe	0 g edge, rature	4 for Marange 72, '73 6, '107 TYP M 20	(ur	0 Inless of	'74 TYP	70 wise		'109 TYI	70 70 MAX	(MIN 20	TYP	70 70 MA:	0 K MIN 20	TY	70 1 P MA 5 2 1	
The arrow indic ectrical chara witching che PARAMETER ¹ fmax TPLH	aracteristics FROM (INPUT) Preset	TO (OUTPUT)	Series 74 e used for reference aded operation 7, TA = 25° (TEST CONDITIONS	0 ince: [†] g free	70 770	70 e risin empe MAX 50	0 g edge, rature '7 MIN	4 for the range 72, '73 6, '107 TYP M 20 16	o (ur	0 Inless of	'74 TYP	70 wise		'109 TYI 33	70 • MAX 3 0 15	(MIN 20	TYP 2	70 MA2 5 2 20	0 K MIN 20		70 1 P MA 5 2 1	
The arrow indic ectrical chara witching char PARAMETER [¶] fmax TPLH TPHL	acteristics over aracteristics FROM (INPUT) Preset (as applicable)	vcc = 5 v vcc = 5 v (output)	Series 74 te used for refer ded operation 7, TA = 25° (TEST CONDITIONS CL = 15 pF.	0 ince: [†] g free	70 770	70 e risin empe MAX 50 50	0 g edge, rature '7 MIN	22, '73 6, '107 TYP M 20 16 25	0 (ur 40	0 Inless of	'74 TYP	70 wise MAX	(MIN) 25	'105 TYI 3.	70 MAX 3 0 15 3 35	(MIN 20	12 12	70 MA3 5 2 20 3 21	0 K MIN 20 5	1 TY	70 1 P MA 5 2 1 1 3	
The arrow indic ectrical chara witching chara witching chara PARAMETER [¶] fmax tPLH tPHL tPLH	aracteristics over aracteristics FROM (INPUT) Preset (as applicable) Clear	VCC = 5 V (OUTPUT)	Series 74 the used for references of the used for references of the used for references of the used	0 ince: [†] g free	70 770	70 e risin empe MAX 50 50 50	0 g edge, rature '7 MIN	4 for the range 72, '73 6, '107 TYP M 20 16 25 16	0 (ur 4x 25 40 25	0 Inless of	'74 TYP	70 wise MAX 25 40		'109 TYI 3 10 2	70 MAX 3 0 15 3 35 0 15	(MIN 20	11 11	70 MA: 5 2 20 3 21 2 20	0 K MIN 20 5 0	1 TY	70 1 P MA 5 2 1 1 3 2 1	
The arrow indic ectrical chara witching cha parameters fmax tPLH tPLH tPLL tPLL	acteristics over aracteristics FROM (INPUT) Preset (as applicable)	vcc = 5 v vcc = 5 v (output)	Series 74 te used for refer ded operation 7, TA = 25° (TEST CONDITIONS CL = 15 pF.	0 ince: [†] g free	'70 TYP 35	70 e risin empe MAX 50 50 50 50	0 g edge, rature '7 MIN	4 for the range 72, '73 6, '107 TYP M 20 16 25 16 25	0 (ur 40	0 Inless of	'74 TYP	70 wise MAX 25 40 25		'109 TYI 3 10 2 11	70 MAX 3 0 15 3 35 0 15 7 25	(MIN 20	11 11 11	70 MA3 5 2 20 3 21 2 20 8 2	0 K MIN 20 5 5 5 5	1 TYI 2 2 1 2 1	70 1 2 1: 1 3 2 1 1 3 2 1 1 3 2 1	UN K MH B n B n 7
ectrical chara witching chara PARAMETER ¹ fmax tPLH tPLH tPLH	aracteristics over aracteristics FROM (INPUT) Preset (as applicable) Clear	VCC = 5 V (OUTPUT)	Series 74 the used for references of the used for references of the used for references of the used	0 ince: [†] g free	70 770	70 e risin empe MAX 50 50 50 50 50	0 g edge, rature '7 MIN 15	4 for the range	0 (ur 4X 25 40 25 40	0 Inless of	'74 TYP 25	70 wise MAX 25 40 25 40		'109 TYI 33 10 23 10 10	70 MAX 3 0 15 3 35 0 15 7 25 0 16	(MIN 20	125 125 115 115 115 115 115 115	70 MA: 5 2 20 3 20 3 20 3 20 3 20 3 20 3 20 3 20	0 K MIN 20 5 0 5 0	1 TYI 2 2 1 2 1 2 1 2	70 1 2 1 1 3 2 1 1 3 2 1 1 3 2 1	UN K MH B n B n 7

Problem #7.

In this problem you are to design a 3-bit counter with a single input (x). When x is 0, the count should be incremented by 1 and when x is 1, the count should be incremented by 2. Label the state variables A, B and C where A is the most significant bit.

- 1. Generate the state diagram for this counter.
- 2. Generate the state table for this counter.
- 3. Generate the next state K-maps for this counter.

4. Implement the design using T flip-flops. Indicate the inputs to the three T flip-flops (the Boolean expression). You don't have to draw the circuit.

Problem #8.

This problem addresses Verilog.

1. There are two errors in the code below; identify them and indicate a fix that will allow the code to compile (make any changes necessary but be clear on the changes).

endmodule

2. For the module below, indicate the circuit that will be synthesized.

3. Construct a state diagram for the Verilog code given below

endmodule